A QUANTIFICATION OF CLIMATE FEEDBACK FROM PERMAFROST DEGRADATION AND THERMOKARST METHANE EMISSION UNDER CLIMATE POLICY AND UNCERTAINTY

C. ADAM SCHLOSSER, XIANG GAO,
ANDREI SOKOLOV, KATEY WALTER,
QIANLAI, ZHUANG, AND
DAVID KICKLIGHTER

Quasi-Linked Simulations with CLM3.5 @2°x2.5°, 1991-2100

UNCONSTRAINED EMISSION					
TCR	Emission	Notes	Abbreviation		
High (95%)	Median (1330 ppm CO2)	+17 regional patterns	HTCR		
Median (50%)		Baseline	MTCR		
Low (5%)		+17 regional patterns	LTCR		
Median (50%)	High(95%) (1660 ppm CO ₂)		MTCR_HEM		
	Low (5%) (970 ppm CO ₂)		MTCR_LEM		

STABILIZATION				
TCR	Emission	Notes	Abbreviation	
High (95%)	550 ppm CO ₂ Equivalent	+17 regional patterns	H450	
Low (5%)		+17 regional patterns	L450	

Total number of simulations: 17*4 + 7 = 75

CHARACTERIZING REGIONAL CLIMATE-CHANGE UNCERTAINTY IN THE IGSM: A HYBRID APPROACH

SCHLOSSER ET AL., 2011 (JP REPORT #205)

$$V_{x,y}^{IGSM} = (C_{x,y} + \frac{dC_{x,y}}{dT_{Global}} * \Delta T_{Global}^{IGSM}) * V_{y}^{-IGSM}$$

 $\frac{dC_{x,y}}{dT_{Global}}:$

The change of transformation coefficient at CO_2 doubling normalized by global temperature difference between the doubled CO_2 and the 20^{th} century, based on the IPCC AR4 archive (~17 GCMs).

TREND IN 45 ~ 90N NEAR-SURFACE PERMAFROST EXTENT (FRACTIONAL CHANGE WITH RESPECT TO 2012, EXCLUDING GLACIER)

TREND IN 45 ~ 90N INFERRED THERMOKARST LAKE EXTENT (FRACTIONAL CHANGE WITH RESPECT TO 2010)

Inferred End of 21st Century Change in Methane Emission from Thermokarst Lake Expansion

EPPA GLOBAL GLOBAL HUMAN CH₄ EMISSION CHANGE: 349 Tg/yr

EPPA GLOBAL HUMAN CH₄ EMISSION CHANGE: 4TG/YR

CLIMATE FEEDBACK (STABILIZATION)

SENSITIVITY OF CLIMATE FEEDBACK

SUMMARY

- Under range of uncertainty in TCR, permafrost degradation occurs linearly between 75% (Low TCR) to nearly 100% (High TCR) at 2100 for unconstrained emission case. Expansion in thermokarst lake occurs between 15% up to 25% for the low and high TCR, respectively.
- STABILIZATION POLICY COULD WELL PREVENT PERMAFROST DEGRADATION (BETWEEN 20% TO 40%) AND THERMOKARST LAKE EXPANSION (BETWEEN 5% AND 15%).
- Incorporating regional climate change accelerates permaphones thawing and increases (Inferred) Lake expansion with the sensitivity of the latter much stronger.
- FOR UNCONSTRAINED EMISSION CASE, INCREASE IN LAKE METHANE EMISSION IS NEGLIGIBLE COMPARED
 WITH HUMAN GLOBAL CH₄ EMISSION INCREASE (~ 345 Tg). However, the magnitude is
 COMPARABLE FOR STABILIZATION CASE.
- Under the uncertainty of transient climate responses, emission, and regional climate changes, our modeled evidence indicates that the increase in CH₄ emission due solely to the expansion of the thermokarst CH₄-emitting lakes has little (if any) feedback to climate warming.
- Sensitivity experiments show that the increased CH₄ emission from thermokarst lake expansion has to be around 100-fold of current estimate to have any discernable temperature response.